
J. Am. Chem. Soc. 1983, 105, 5487-5488 5487 

Location of Double Bond Position in Unsaturated Fatty 
Acids by Negative Ion MS/MS 

Kenneth B. Tomer,* Frank W. Crow, and Michael L. Gross 

Midwest Center for Mass Spectrometry 
Department of Chemistry, University of Nebraska—Lincoln 

Lincoln, Nebraska 68588 

Received March 25, 1983 

A long-standing problem in the identification and structure 
proof of fatty acids and similar compounds has been the deter­
mination of the position of the double bond. The positive ion 
electron-ionization mass spectra of these compounds have been 
found to be uninformative due to extensive rearrangement and 
fragmentation.1 On the other hand, negative ion mass spectra 
obtained in a CI mode also tend to be uninformative due to a lack 
of fragmentation. Thus, much of the work in this area has been 
directed toward derivatization of the double bond prior to analysis, 
e.g., by epoxidation,2 or toward derivatization within the mass 
spectrometer source under CI conditions.3 All of these methods 
suffer certain drawbacks, and current research continues to be 
focused on this problem.4 Here we report a simple method that 
yields striking results for the location of double bonds in under-
ivatized fatty acids. The method makes use of the collisional 
activated decomposition (CAD) spectra of the negative ions, (M 
- H)", of the fatty acids. 

Mass spectra were obtained with a Kratos MS-50 triple ana­
lyzer tandem mass spectrometer, which has been recently de­
scribed.5 Briefly, the instrument consists of a high-resolution MS-I 
of Nier-Johnson geometry followed by an electrostatic analyzer 
used as MS-II. Fast atom bombardment (FAB)6 was used to 
desorptively ionize the preformed conjugate bases from the basic 
matrix triethanolamine. CAD spectra were taken by activating 
the ions in the third field free region using helium gas (sufficient 
helium was added to suppress the ion beam by 50%) and scanning 
MS-II; 20-30 scans were signal averaged for each spectrum. 

The mass spectra of the acids in the negative ion mode consist 
of (M - H)" ions with no apparent fragmentation (see Figure 1 
for a typical spectrum). Upon collisional activation (see Figure 
2 for a typical MS/MS spectrum), however, the (M - H)" ion 
gives rise to a rich diversity of fragment ions amounting to ap­
proximately 3% of the (M - H)" ion beam suppressed by collision. 
The observed peaks represent apparent successive losses of carbons 
initiated at the non-carboxy end of the molecule. It should be 
pointed out, however, that the mechanism is neither simply that 
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Figure 1. Negative ion mass spectrum of elaidic acid (9-octadecenoic 
acid). 
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Figure 2. CAD spectrum of m/z 281 [(M - H)"] ion of elaidic acid. 

of successive cleavages of CH2 units nor competitive alkyl cleavages 
since the initial loss is of overlapping losses of 16, 17, and 18 amu 
with only a small contribution from loss of 15 amu, and the formal 
site of ionization is remote from the putative fragmentation. The 
large peak at m/z 182 is due to cleavage of the carbon-carbon 
bond allylic to the double bond on the CH3 terminal side of the 
chain.7 The next three lower mass peaks are dramatically less 
intense and are followed by a significantly greater intensity peak 
representing allylic cleavage on the carboxy side of the double 
bond.8 

This pattern of two intense peaks corresponding to cleavage 
allylic to the double bond with three very minor intervening peaks 
appears to be a general characteristic of monounsaturated fatty 
acids and can be used to identify unequivocally the location of 
the double bond (see Figure 3 for the results in bar graph form 
for the 15 fatty acids we have studied). No differences were 
observed for cis and trans isomers. 

When more than one double bond is present, the positions of 
the double bonds do not stand out as clearly as for monounsa­
turated acids. The same pattern, however, of preferential allylic 
cleavages is observed. This is illustrated by the bar graphs in 
Figure 4 for linoleic and linolenic acids. Also included in Figure 
4 is the representation for ricinoleic acid, 12-hydroxyoleic acid. 
Here the allylic cleavage is greatly enhanced by the presence of 
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Figure 3. Bar graph representations of the CAD spectra of monounsa-
turated fatty acids (carbon one is the carboxylate terminus): (A) ner-
vonic acid (ds-15-tetracosenoic acid); (B) erucic and brassidic acids (cis-
and Jranj-13-docosenoic acids); (C) cis-11-eicosenoic acid; (D) petrose-
linic and petroselaidic acids (cis- and rra/M-6-octadecenoic acids); (E) 
cis- and fra/ts-vaccenic acids (cis- and trans-11-octadecenoic acids); (F) 
oleic and elaidic acids (cis- and ?ra«5-9-octadecenoic acids); (G) pal-
mi toleic and palmtolaidic acids (cis- and fran.s-9-hexadecenoic acids); 
(H) myristoleic acid (cw-9-tetradecenoic acid); (I) 10-undecenoic acid). 
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Figure 4. Bar graph representation of the CAD spectra of polyunsatu­
rated and hydroxy fatty acids (carbon one is the carboxylate terminus): 
(A) linoleic acid (ei'5-9,cw-12-octadecadienoic acid); (B) linolenic acid 
(cii-9,C!>12,c(i-15-octadecatrienoic acid); (C) ricinoleic acid (12-
hydroxy-9-octadecenoic acid). 

the alcohol functionality (a-cleavage). 
The enhanced structural information obtained from dissociation 

reactions of negative ions compared to positive ions may be more 
general than for the fatty acids reported in this paper.9 As a test, 
we are currently exploring the utility of this technique not only 
for more complex unsaturated acids but also for other unsaturated 
compounds. The mechanism of the CAD process is also under 
study. 
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Cuprous complexes with ethylene and acetylene have been of 
interest for many years. These complexes are, in general, unstable 
(to loss of C2H4 and C2H2) and only poorly characterized.1"3 Our 
interest in this area arises from the proposed role of copper in the 
binding of the plant hormone ethylene to its receptor site.4 

Although the effects of ethylene on virtually every phase of plant 
development (germination, growth, flowering, fruit ripening, 
senescence, and abscission) are well established, the site of ethylene 
action remains unknown.4,5 Binding and inhibition studies suggest 
that a copper ion may be involved.4,5 We reported recently the 
synthesis and first structural characterization of stable Cu(I)-
ethylene complexes, which established that the coordination 
chemistry of Cu(I)-monoolefin complexes is consistent with the 
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